
1

Injectors and Annotations

Robert E. Filman
Research Institute for Advanced Computer Science

NASA Ames Research Center, MS/269-2
Moffett Field, CA 94035

rfilman@mail.arc.nasa.gov

Introduction
In [7], we presented the Object Infrastructure Framework. The goal of that system is to
simplify the creation of distributed applications. The primary claim of that work is that
non-functional “ilities” could be achieved by controlling and manipulating the commu-
nications between components, thereby simplifying the development of distributed sys-
tems. A secondary element of that paper is to argue for extending the conventional dis-
tributed objects model in two important ways:

1. The ability to insert injectors (filters, wrappers) into the communication path be-
tween components.

2. The ability to annotate communications with additional information, and to
propagate these annotations through an application.

Here we express the descriptions of that paper.

Injectors
The ideas of OIF are demonstrated in a system built around CORBA and Java. OIF has a
modified a CORBA IDL compiler. This compiler generates both client and server proxies
that store, for each method on each object, a table of injectors. Between the application
and marshalling, the new proxies successively execute the injectors associated with the
called object and method (Figure 1).

Semantically, one would think one wouldn’t need to wrap both the caller and the
called function. After all, computationally, they’re almost the same place. However, OIF
places injectors on both the client and the server because

• In a distributed system, one may need behavior on both sides of the distributed divide.
For example, security requires authenticating on the server credentials generated on the
client.

• In a distributed system, there can be pragmatic difference depending on where some-
thing is done. For example, keeping a cache of recently-seen-values on the server is point-
less.

• Using the annotation mechanism, injectors on each side shared some context with appli-
cation objects.

Injectors in OIF are by object/method. Each instance proxy and each method on that
object can have a distinct sequence of injectors. Newly created proxies that supported a
particular interface use the default injector sequence defined for each method on that
interface. The system also includes a language (Pragma) for specifying these defaults.



Robert E. Filman Injectors and Annotations

2

Injectors in OIF are dynamic. There are interfaces for changing the injectors on a
given proxy and for changing the default injectors for a newly created proxy’s type.
More formally, one specifies factories of injectors and parameters for the factories for de-
faults. This allows creating injectors that obey patterns such as singleton (one injector
object for every proxy), full multiplicity (each object got its own injector), or other possi-
bilities in between. The factory objects are called with the newly created proxies and
additional parametric information. Dynamic injectors allow techniques such as run-
time, interactive placement of debugging and monitoring probes; and creating software
that detects its own obsolescence and updates itself. Of course, one would only want to
expose this interface to trusted applications.

Injectors are called with the CORBA request object and an object representing the
continuation—the rest of the injector sequence to be called. From the request object, injec-
tors can manipulate the call’s target, method name, arguments, annotations, and re-
turned value. Injectors are objects, and themselves can do arbitrary other computations,
including publishing their distributed-object address and making remote calls of their
own.

The last action of a normally terminating injector is to invoke the next injector in the
continuation. It gives that injector the request object and the remainder of the continua-
tion sequence. (This behavior is wrapped up in a helper function on the “list” object that
forms the continuation.) This allows injectors to catch exceptions and to forgo or change
the continuation sequence. Catching exceptions allows error handling by injectors—for
example, retargeting a failing request to another server [9].

We also use exceptions as a control mechanism. For example, in the authentication
injector pair, the server-side authentication injector, if unsatisfied with a request’s cre-
dentials, throws an exception, to be caught by the client-side authentication injector. The
client injector obtains the user’s credentials (in our example, using the famed iButton

CORBA Stub

Client

Network

Client-Side
Proxy

Server-Side
Proxy

Server

CORBA Skeleton

Replication

User identification

Retry

Debugging

Authentication

Queueing

Accounting

Replication

Figure 1: OIF inserts injectors between the application and the network



Robert E. Filman Injectors and Annotations

3

Java ring [3]) and reinvokes the process.
Retargeting is one example of changing the continuation. A simpler one is the injec-

tor that implements a cache—if the desired value is already in the cache, then that injec-
tor skips calling the remainder of the injector sequence and simply returns the marked
value. Caching can be used for services that are functional, or to create “by need” ob-
jects. Table 1, from [6], list some possible applications of injectors. Reference [8] dis-
cusses several examples of injectors in greater depth.

Annotations
Injectors need to communicate among themselves. For example, an authentication injec-
tor needs to know the identity and credentials of a service requestor. Other examples of
tasks aided by inter-injector communication include sending process priority, account-
ing data, debugging interests, version information, and transactions.

Annotations provide a language for applications and injectors to communicate
about requests. That is, they are a meta-language for statements about requests and the
processing state. Annotations can express notions like “This request is to be done at
high priority,” “Here are the user’s credentials for this request,” and “Here is the cyber-
cash to pay for this request.”

In OIF, annotations are a set of arbitrary name-value pairs. The names are strings
and the values, CORBA ANY types. Using ANY types allows object references as annota-
tion values. (Of course, if we were to rebuild the system today, fashion would demand

Ility Injector Action
Security Authentication Determines the identity of a user.

Access control Decides if a user has the privileges for a specific operation.
Encryption Encodes messages between correspondents.
Intrusion detec-

tion
Recognizes attacks on the system.

Reliability Replication Replicates a database.
Error retry Catches network timeouts and repeats call.
Rebind Notices broken connections and opens connections to alternative

servers.
Voting Transmits the same request to multiple servers (in sequence or par-

allel) combining the results by temporal or majority criteria.
Transactions Coordinates the behavior of multiple servers to all commit or fail

together. Requires additional interface on application objects.
Quality of ser-

vice
Queue-manager Provides priority-based service.

Side-door Provides socket-based communication transparently to application.
Futures Provides futures transparently to the application.
Caching Caches results of invariant services.

Manageability Logging Reports dynamically on system behavior.
Accounting Reports to accounting system on incurred costs.
Status Accrues status information and reports when requested.
Configuration

management
Dynamically test for incompatible versions and automatically up-

dates software.
Table 1: Injector applications



Robert E. Filman Injectors and Annotations

4

that the annotations be encoded in XML. Conceptually, this would make little differ-
ence.)

The use of arbitrary name-value pairs, like weak-typing, has advantages and disad-
vantages. Arbitrary pairs require implicit agreement among processes as to the meaning
and data types of annotations. On the other hand, arbitrary pairs allow easily augment-
ing the system with additional information without having to reprogram every associ-
ated element to know about the new kind of annotation. The framework defines certain
common annotations, including session identification, request priority, sending and due
dates, version and configuration, cyber wallet, public key, sender identity and conversa-
tional thread. Programs can rely on the common meanings of these annotations. Arbi-
trary fields, with no prohibition against unknown fields, are a feature of many applica-
tion interfaces, including http and mail headers, certain XML DTD forms, and property
sets in Lisp and Java.

OIF implements annotations by turning them into a sub rosa additional call argu-
ment.

One of the defining requirements of the OIF system was that it be invisible to users
who weren’t using it. (We were trying, after all, to simplify distributed computing [5]).
Nevertheless, applications stilled need to communicate with the injector mechanism.
For example, a quality-of-service injector may want to process requests in order of their
priority, but the only reasonable source of request priority is the client application. We
mediate this issue by giving each application thread a thread context. Thread contexts are
the same stuff as annotations—arbitrary maps from strings to values. On creating a new
request, the framework populates the annotations of that request with the annotations
of the calling thread context. These annotations are passed to the server side, where the
thread context of the thread serving the request is initialized to these values. At return
time, the process is inverted—the annotations of the server thread are copied to the re-
ply object and passed to the framework on the client side. The client uses these values to
update the annotations of the originally calling thread.

This scheme has the feature of propagating context through a chain of calls: client
A’s call of B at priority x becomes B’s context’s priority of x. B’s request of C (in further-
ance of A’s call) goes out with priority x. Figure 2 illustrates this pattern.

Thread contexts have the advantage of permitting client/injector communication
without modifying the application interfaces. They have the disadvantages that
(1) newly spawned threads need to copy or share the context of their parents and
(2) there is no primitive linguistic mechanism for neatly “block structuring” a change to
a thread’s context—for example, allowing a thread to simply timeshare among tasks. I
note that J2EE also associates “user identity” with thread, and fails for non-system
spawned threads.

In OIF, declarations can control annotation copying. For example, the number of
times the (client) retry-on-failure injector retries is purely local to the client and is not
sent downstream. Similarly, we do not want a server to be able to update a client’s user
identification. The default behavior is to copy, enabling creating and propagating new
annotations without modifying existing application code.

Related Work
OIF is in the spirit of much work in Aspect-Oriented Programming [4]. It has particular
similarity to the work on Composition Filters [1] and Aspect Frameworks [2]. The use of
filters on communications has been taken up in the security interceptors of CORBA [10].



Robert E. Filman Injectors and Annotations

5

From our point of view, these interceptors are in the wrong place, after argument mar-
shalling, where the contents of requests are too opaque to the filters. We could argue
that per object/per method filtering is a richer mechanism than the singletons of typical
CORBA implementations. The counter arguments would be that per object/per method
filtering can be implemented in a singleton filter, and that somehow having so much
information would be too expensive. The idea of filtering has also been applied by
Thompson et al. to web services [11].

Concluding remarks
Distributed systems introduce additional complexity. Developing a distributed system
is in itself a more difficult task because distributed systems imply non-determinism (and
non-determinism is complex), distribution introduces many additional kinds of failures,
distribution is naturally less secure, and distribution’s inherent decentralization is in-
convenient to manage. Distributed computing can be made simpler by making it look
more like conventional programming and by providing and automatically invoking cor-
rect implementations of distributed and concurrent algorithms.

Injectors and annotations are part of a mechanism to get a handle on these prob-
lems. By providing a mechanism for introducing corrective action and a locus for exper-
tise, injectors and annotations can be an element in achieving the simpler-distributed-
computing goal.

References
[1] Bergmans, L., and Aksit, M. Composing crosscutting concerns using composition filters.

Comm. ACM 44, 10 (Oct. 2001), pp. 51–57.

[2] Constantinides, C. A., and Elrad, T. Composing concerns with a framework approach. In
Proc. International Workshop on Distributed Dynamic Multiservice Architectures, 21st IEEE Int'l
Conf. on Distributed Computing Systems, Workshops, Vol. 2 (Phoenix, Apr. 2001), pp. 133–140.

[3] Dallas Semiconductor Corporation. ibutton: Touch the future. http://www.ibutton.com/.

[4] Elrad, T., Filman, R. E., and Bader, A. Aspect-oriented programming. Comm. ACM 44, 10

ProxyProxy

Cntxt←AnnCntxt←Ann

ProxyProxy

Ann←CntxtAnn←Cntxt

Application
Component B
Application

Component B
Context

ProxyProxy

Ann←CntxtAnn←Cntxt

Application
Component A
Application

Component A
Context

ProxyProxy

Cntxt←AnnCntxt←Ann

Application
Component C
Application

Component C
Context

B’s proxies C’s proxies

}m injectors{ }n injectors{
ProxyProxy

Cntxt←AnnCntxt←Ann

ProxyProxy

Ann←CntxtAnn←Cntxt

ProxyProxy

Cntxt←AnnCntxt←Ann

ProxyProxy

Cntxt←AnnCntxt←Ann

ProxyProxy

Ann←CntxtAnn←Cntxt

ProxyProxy

Ann←CntxtAnn←Cntxt

Application
Component B
Application

Component B
Context

Application
Component B
Application

Component B
Context

ProxyProxy

Ann←CntxtAnn←Cntxt

ProxyProxy

Ann←CntxtAnn←Cntxt

Application
Component A
Application

Component A
Context

Application
Component A
Application

Component A
Context

ProxyProxy

Cntxt←AnnCntxt←Ann

ProxyProxy

Cntxt←AnnCntxt←Ann

Application
Component C
Application

Component C
Context

Application
Component C
Application

Component C
Context

B’s proxies C’s proxies

}m injectors{ }n injectors{
1. When object A makes a call on a method m in Object B, it’s thread context is copied over into the

annotation of the request
2. After creating the thread to serve A’s request, the annotations of the request are copied to that

thread’s context
3. B calls method n on C. This process is repeated for B’s calls when handling that request. Thus,

an annotation (e.g., priority) set in A is carried over through B to C.

Figure 2. Propagating annotations through multiple calls



Robert E. Filman Injectors and Annotations

6

(Oct. 2001), 29–32.

[5] Filman, R. E. Injecting ilities. In Int'l Workshop on Aspect Oriented Programming, ICSE,
(Kyoto, Apr. 1998).

[6] Filman, R. E. Applying aspect-oriented programming to intelligent synthesis. In Workshop
on Aspects and Dimensions of Concerns, ECOOP 2000 (Cannes, France, June 2000).

[7] Filman, R. E., Barrett, S., Lee, D. D., and Linden, T. Inserting ilities by controlling communi-
cations. Comm. ACM 45, 1 (Jan. 2002), 116–122.

[8] Filman, R. E., Korsmeyer, D. J., and Lee, D. D. A CORBA extension for intelligent software
environments. Advances in Engineering Software, 31, 8–9 (2000), 727–732.

[9] Filman, R. E., and Lee, D. D. Redirecting by injector. In Proc. International Workshop on Dis-
tributed Dynamic Multiservice Architectures, 21st IEEE Int'l Conf. on Distributed Computing Sys-
tems, Workshops, Vol. 2 (Phoenix, Apr. 2001), pp. 141–146.

[10] Siegel, J. CORBA Fundamentals and Programming. John Wiley & Sons, New York, 1996.

[11] Thompson, C., Pazandak, P., Vasudevan, V., Manola, F., Palmer, M., Hansen, G., and Ban-
non, T. Intermediary architecture: Interposing middleware object services between web cli-
ent and server. ACM Computing Surveys 31, 2es (1999), 14.


